Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python
Thumbnail 1

Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python

4.6/5
Product ID: 391326528
Secure Transaction

Description

Full description not available

Large manufacture image 1
Small manufacture image 1Small manufacture image 2Small manufacture image 3Small manufacture image 4

Reviews

4.6

All from verified purchases

P**R

Excellent book on ML

This is a great book on machine learning. Topics covered are extensive - from beginner level to advanced topics including math behind different algorithms. However, not "all" algorithms are covered. Please go through the table of contents.The first part - 11 chapters - covers machine learning concepts and second part covers advanced topics with Pytorch. There are lots of excellent code and they work!!The quality of the book I received is excellent. I have gone through all 742 pages, and it has held up very well!!I used Jupyter notebook to run all examples. I created a new notebook and copied and pasted the code and ran them. This approach worked very well for me. At the same time, I could experiment with my take on the code snippets and definitely added to my knowledge.Only issue I have is on the second part of the book discussing PyTorch: (1) Some packages are a bit older version: e.g., transformer 4.9.1 whereas current version is 4.48+. It took some tweaking/recoding to get the examples working. (2) There is not much discussion on why certain architecture was chosen - e.g., number of layers, is there a rule of thumb on how to improve performance by changing these parameters? Even with CUDA the code run for a long time. Therefore, experimenting with different values of parameters become too time consuming. (3) On the same note, if I can achieve test accuracy of 90%+ using logistic regression and almost the same (perhaps one or two percent better with PyTorch with IMDB movie review dataset and that two much faster why should I use PyTorch for this dataset? Obviously, PyTorch is for certain types of problems. Discussions can be included by not adding to the exhaustive (and apt) contents.Personally I was disappointed by lack of any example on time series.Must have for ML practitioner as a reference and guide.

C**B

Handy guide

It’s a useful introduction book and a guide to ML, I use it as a supporting source to my training.

S**

Great Intro with Hands-On Code

A solid and accessible introduction to machine learning—clear explanations without being overly technical. I really appreciated seeing the full code examples throughout. A great learning resource overall.

S**R

Concepts explained from scratch in every chapter

Very comprehensive and well written book. The authors show how every layer underneath is created in every chapter. Thanks to the authors, I was finally able to wrap my head around back-propagation

S**J

Very useful book to get started on ML and Deep Learning

I started with Seb's book on Build a Large Language Model and was impressed by the quality of the contents that I went back to this book to get the basics. Excellent material backed up by the github sample content. I am only in the early stages of reading this book but am hooked onto it and will continue to work through.

R**N

Excellent Textbook for Hands-On Learning of ML

This textbook is for the serious life-long learners of machine learning. There are at least two ways to ‘consume’ this book.For the expert in ML, this is a textbook to study as a clear comprehensive ML overview and then to dive into sections of interest or ignorance. The concepts are grounded in code examples and are well cited (with links) to sources. Further, this textbook is appropriate if you are TensorFlow-centric and want to broaden into cutting-edge ML models/tools coded in PyTorch.For a new learner to ML, this is a textbook to DO (not just READ) with hands-on and brain-engaged. If you realize that ML is a key life-long skill for your career, consider this textbook as part of a daily learning habit (10-30 min).From personal experience, my advice to the new learner is as follows… First, clone the GitHub repository, setup your Python environment, and study the textbook, while working through the notebooks. Go on tangents and break the code. Do this methodically as part of your daily learning habit, but do not hesitate to jump ahead several chapters to prepare for tomorrow’s meeting. There is enough excellent material here for a full year of ML adventures.I did a similar strategy with Raschka’s first textbook. About four years ago, I had finished Andrew Ng’s Deep Learning Specialization as a student in his first cohort. I knew the concepts well but could not do the actual application coding. I was surprised how my Python coding improved by following Raschka’s clean and elegant style. And Raschka’s code examples were meaty enough to be springboards into working applications.Several textbook editions later, what is different about this new edition?First, it moves you through scikit-Learn (a firm foundation) to PyTorch, instead of TensorFlow. PyTorch is a better stepping-stone, both conceptually and practically. With PyTorch, you will go further with less energy, while being able to convert your efforts into TensorFlow as needed. In addition, most of the cutting-edge ML/AI/DL research is in PyTorch. It is nice to read a recent arXiv paper, clone their repository, click on the Colab tutorial, and replicate their experiments, along with picking up a ton of new coding tricks & tips. I am excited to work through these PyTorch sections to hone my skills.Second, there is a clear recognition of model tracking and tuning practices. This is often a gap in other ML textbooks and courses. Once you progress beyond the simple demo examples in a lecture, you realize that the real work is experiments, more experiments, and still more experiments, so that you must understand what the model architecture and hyperparameters are doing to your dataset. There is good coverage of scikit-Learn pipeline, grid search, model performance, and the like.Third, ML/AI/DL practice is rapidly evolving. Every week new ML packages/services become available that could save much grief on your current project. What is refreshing about Raschka’s textbook series is that he constantly adding cutting-edge topics because he likes to stay current and to help us stay current. Hence, this edition contains recent ML treats as: transformers, self-supervised learning, autoencoders-to-GAN, graph neural networks, DBSCAN, t-SNE (with brief mention of UMAP), and PyTorch-Lightning.

Common Questions

Trustpilot

TrustScore 4.5 | 7,300+ reviews

Pooja R.

The customer service exceeded my expectations. Perfect for buying products you can't find elsewhere.

1 week ago

Zainab N.

Fantastic and great service. Shipping was faster than expected.

1 week ago

Shop Global, Save with Desertcart
Value for Money
Competitive prices on a vast range of products
Shop Globally
Serving over 300 million shoppers across more than 200 countries
Enhanced Protection
Trusted payment options loved by worldwide shoppers
Customer Assurance
Trusted payment options loved by worldwide shoppers.
Desertcart App
Shop on the go, anytime, anywhere.
£33.40

Duties & taxes incl.

UKstore
1
Free Returns

30 daysfor PRO membership users

15 dayswithout membership

Secure Transaction

Trustpilot

TrustScore 4.5 | 7,300+ reviews

Zainab N.

Fantastic and great service. Shipping was faster than expected.

1 week ago

Ali H.

Fast shipping and excellent packaging. The Leatherman tool feels very premium and sturdy.

1 day ago

Machine Learning With Pytorch And Scikit Learn Develop Machine Learning | Desertcart GB